This print-out should have 20 questions. Multiple-choice questions may continue on the next column or page - find all choices before answering.

$001 \quad 10.0$ points

Which one of the processes listed below (if any) have a positive value for ΔS ?

1. None of the choices here have a positive ΔS.
2. The condensation of water droplets on an ice cold drink.
3. The formation of ice crystals from water in a freezer compartment.
4. Rubbing alcohol (isopropanol) evaporating from your skin. correct

Explanation:

Evaporation is liquid to gas which has a $+\Delta S$ value. Freezing and condensation have negative values for ΔS.

$002 \quad 10.0$ points

When sodium chloride is melted, the sign of $\mathrm{q}_{\mathrm{sys}}$ and $\Delta \mathrm{S}_{\text {sys }}$ are \qquad and \qquad , respectively.
1.,+-
2.,--
3.,++ correct
4.,-+

Explanation:

The disorder is increased for the process. Melting is an endothermic process, therefore $\mathrm{q}_{\text {sys }}$ will be positive.

00310.0 points

For which of the following is $\Delta \mathrm{S}_{\text {sys }}$ likely to be greater than zero?
I. $2 \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{~g}) \rightarrow 4 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
II. $\mathrm{Br}_{2}(\mathrm{l}) \rightarrow \mathrm{Br}_{2}(\mathrm{~g})$
III. $\mathrm{Al}\left(25^{\circ} \mathrm{C}\right) \rightarrow \mathrm{Al}\left(80^{\circ} \mathrm{C}\right)$

1. III only
2. II, III
3. II only
4. I only
5. I, III
6. I, II, III correct

Explanation:

The entropy increases in I because two moles of gaseous reactants are converted to five moles of gaseous products. The process of vaporization always increases the entropy, thus II is correct. III is also a correct answer because the increase in temperature will always increase the entropy.

00410.0 points

A glass of cold water sits on a table top. As the day progresses, the water warms up to room temperature. For this process, $\Delta S_{\text {surr }}$ is

1. Positive

2. Negative correct

3. Zero

Explanation:

None
$005 \quad 10.0$ points
Calculate the $\Delta S_{\text {surr }}$ for the following reaction at $25^{\circ} \mathrm{C}$ and 1 atm .
$\operatorname{Br}_{2}(\ell) \rightarrow \operatorname{Br}_{2}(\mathrm{~g}) \quad \Delta H_{\mathrm{rxn}}^{\circ}=+31 \mathrm{~kJ}$

1. $+93 \mathrm{~J} / \mathrm{K}$
2. $+124 \mathrm{~J} / \mathrm{K}$
3. - $104 \mathrm{~J} / \mathrm{K}$ correct
4. $+104 \mathrm{~J} / \mathrm{K}$
5. $-124 \mathrm{~J} / \mathrm{K}$
6. $-93 \mathrm{~J} / \mathrm{K}$

Explanation:

In general for any process:

$$
\Delta S_{\mathrm{surr}}=\frac{-\Delta H_{\mathrm{sys}}}{T_{\mathrm{surr}}}
$$

This is because the heat flow in the surroundings is just the opposite of the heat flow for the system $\left(q_{\text {surr }}=-q_{\mathrm{sys}}\right.$ and at constant pressure the heat is equal to ΔH.
therefore $\Delta S_{\text {surr }}=-31000 / 298$

$$
=-104 \mathrm{~J} / \mathrm{K}
$$

$006 \quad 10.0$ points

The sublimation of solid carbon dioxide is a spontaneous process. Predict the sign $(+,-$, or 0$)$ of $\Delta G_{\mathrm{r}}^{\circ}, \Delta H_{\mathrm{r}}^{\circ}$, and $\Delta S_{\mathrm{r}}^{\circ}$, respectively.

$$
\text { 1. }-,+,+ \text { correct }
$$

2.,,---
3.,,-+-
4. $-, 0,+$
5. $0,+,+$

Explanation:

ΔG is negative for a spontaneous reaction.
Sublimation requires energy to facilitate the solid becoming a gas, so the process is endothermic (ΔH is positive). Finally, the entropy of a gas is more than that of a solid, so disorder increases (ΔS is positive).
$007 \quad 10.0$ points
At constant pressure and temperature, which of the following is true about $\Delta \mathrm{S}_{\text {surr }}$

1. $\Delta \mathrm{S}_{\text {surr }}=-\Delta \mathrm{H}_{\text {sys }} / \mathrm{T}$ correct
2. $\Delta \mathrm{S}_{\text {surr }}=-\Delta \mathrm{G}_{\text {sys }} / \mathrm{T}$
3. $\Delta \mathrm{S}_{\text {surr }}=-\mathrm{T} \Delta \mathrm{H}_{\mathrm{sys}}$
4. $\Delta \mathrm{S}_{\text {surr }}=-\Delta \mathrm{S}_{\text {sys }}$
5. $\Delta \mathrm{S}_{\mathrm{surr}}=-\mathrm{T} \Delta \mathrm{S}_{\mathrm{sys}}$

Explanation:

The entropy change for the surroundings is related to the heat for the process such that

$$
\Delta \mathrm{S}_{\text {surr }}=\frac{\mathrm{q}_{\text {surr }}}{\mathrm{T}_{\text {surr }}}=\frac{-\mathrm{q}}{\mathrm{~T}_{\text {surr }}}
$$

where q is from the perspective of the system (out of the system into the surroundings). At a constant temperature there is only one temperature T. At constant pressure the heat for a process (from the perspective of the system) is the change in enthalpy of the system. Thus

$$
\frac{\Delta \mathrm{S}_{\text {surr }}=\frac{-\Delta \mathrm{H}_{\text {sys }}}{\mathrm{T}}}{0008 \quad 10.0 \text { points }}
$$

Consider a chemical reaction where ΔS is $36.1 \mathrm{~J} / \mathrm{mol} \mathrm{K}$, and ΔH is $-2.88 \mathrm{~kJ} / \mathrm{mol}$. What is the change in entropy for the universe ($\Delta S_{\text {univ }}$) for this reaction at $50^{\circ} \mathrm{C}$?

1. $+40.5 \mathrm{~J} / \mathrm{mol} \mathrm{K}$
2. $+27.2 \mathrm{~J} / \mathrm{mol} \mathrm{K}$
3. $-47.9 \mathrm{~J} / \mathrm{mol} \mathrm{K}$
4. $+45.0 \mathrm{~J} / \mathrm{mol}$ K correct
5. -36.1 J/mol K

Explanation:

The heat leaving the system enters the surroundings. Therefore

$$
\begin{aligned}
& \Delta S_{\text {surr }}=-\Delta H / T \\
& \Delta S_{\text {surr }}=-(-2880) / 323.15 \\
& \Delta S_{\text {surr }}=+8.91 \mathrm{~J} / \mathrm{mol} \mathrm{~K} \\
& \text { Now } \Delta S_{\text {univ }} \text { can be easily calculated: } \\
& \Delta S_{\text {univ }}=\Delta S_{\text {sys }}+\Delta S_{\text {surr }} \\
& \Delta S_{\text {univ }}=36.1+8.91=45.0 \mathrm{~J} / \mathrm{mol} \mathrm{~K}
\end{aligned}
$$

$009 \quad 10.0$ points

Calculate ΔG° for the following reaction at 298 K.

$$
\mathrm{NH}_{4} \mathrm{NO}_{3}(\mathrm{~s}) \rightarrow \mathrm{N}_{2} \mathrm{O}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

$$
\text { 1. }+130 \mathrm{~kJ}
$$

2. $-1.33 \times 10^{5} \mathrm{~kJ}$
3. +169 kJ
4. -113 kJ
5. +97.2 kJ
6. -169 kJ correct
7. -130 kJ

Explanation:

Must use $\Delta H_{\mathrm{f}}^{\circ}$ and S° values because the $\Delta G_{\mathrm{f}}^{\circ}$ ones are not available. Then to get free energy change use:

$$
\Delta G=\Delta H-T \Delta S
$$

$$
\begin{aligned}
& \Delta S=[220+2(189)]-151=447 \mathrm{~J} / \mathrm{K} \\
& \Delta H=[82+2(-242)]-(-366)=-36 \mathrm{~kJ} \\
& \Delta G=-36000-298(447)=-169206 \mathrm{~J} \\
& \Delta G=-169 \mathrm{~kJ}
\end{aligned}
$$

$010 \quad 10.0$ points

For a given reaction, if $\Delta H_{\mathrm{rxn}}^{\circ}$ is (negative/positive/either) and $\Delta S_{\mathrm{rxn}}^{\circ}$ is (negative/positive/either), then the value of $\Delta G_{\mathrm{rxn}}^{\circ}$ will always be negative, regardless of the temperature.

1. positive, negative

2. negative, positive correct
3. positive, either
4. negative, either
5. either, positive
6. either, negative

Explanation:

This comes from

$$
\Delta G=\Delta H-T \Delta S
$$

In order for $\Delta G_{\mathrm{rxn}}^{\circ}$ to always be negative, $\Delta H_{\mathrm{rxn}}^{\circ}$ must always be negative and $\Delta S_{\mathrm{rxn}}^{\circ}$ must always be positive.

$011 \quad 10.0$ points

What is the change in entropy (ΔS) for the heating of 20.0 grams of methanol $\left(\mathrm{CH}_{3} \mathrm{OH}\right.$, liquid) from $34^{\circ} \mathrm{C}$ to $62^{\circ} \mathrm{C}$?

1. $0 \mathrm{~J} / \mathrm{K}$
2. $0.22 \mathrm{~J} / \mathrm{K}$
3. - $30.42 \mathrm{~J} / \mathrm{K}$
4. $1418 \mathrm{~J} / \mathrm{K}$
5. $30.42 \mathrm{~J} / \mathrm{K}$
6. $168.81 \mathrm{~J} / \mathrm{K}$

7. $4.42 \mathrm{~J} / \mathrm{K}$ correct

Explanation:

The specific heat capacity of methanol is equal to $2.533 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$ via table of data. Use the equation:

$$
\Delta S=m C_{\mathrm{s}} \ln \left(\frac{T_{2}}{T_{1}}\right)
$$

$$
\Delta S=20(2.533) \ln (335 / 307)=4.42
$$

$012 \quad 10.0$ points

A 15 g sample of steam at $110{ }^{\circ} \mathrm{C}$ was placed into a warehouse freezer at $-40^{\circ} \mathrm{C}$. In order to properly calculate the total change in entropy of this system, what equations would you use?
I. $\Delta \mathrm{S}=\mathrm{nC}^{\ln }\left(\frac{\mathrm{T}_{\mathrm{f}}}{\mathrm{T}_{\mathrm{i}}}\right)$
II. $\Delta \mathrm{S}=\frac{\Delta \mathrm{H}}{\mathrm{T}}$
III. $\Delta \mathrm{S}_{\text {univ }}=\Delta \mathrm{S}_{\text {sys }}+\Delta \mathrm{S}_{\text {surr }}$
IV. $\Delta \mathrm{S}=\mathrm{mC} \Delta \mathrm{T}$

1. I, II, III, IV
2. I, III
3. II, IV

4. I, II correct

5. IV

Explanation:

Equation I is used three times (cooling the steam from 110 to $100{ }^{\circ} \mathrm{C}$, cooling the water from 100 to $0^{\circ} \mathrm{C}$, and cooling the ice from 0 to $-40{ }^{\circ} \mathrm{C}$). Equation II would be used two times (condensing the steam and freezing the water).

$013 \quad 10.0$ points

Iron metal will react with oxygen gas to form a variety of iron oxides. This oxidation reaction is typically referred to as the iron "rusting". The fact that this reaction is spontaneous at room temperature tells you that

1. the 2nd law of thermodynamics has been violated
2. iron oxides have a higher standard entropy compared to oxygen and iron
3. iron oxides have a positive enthalpy of formation
4. iron oxides have a negative Gibbs energy of formation correct

Explanation:

The fact that the iron and oxygen (both elements) spontaneously form a compound, iron oxide, at room temperature tell us that the free energy of formation of the iron oxide must be negative. The iron oxide is lower in free energy compared to the elements that it is formed from.

$014 \quad 10.0$ points

The absolute entropy of a system (S measured in $J / K)$ is related to the number of microstates in that system. Consider the three processes listed below. Which one(s) will result in an increase in the number of microstates in the system?
I) The temperature of a gas is raised by $3^{\circ} \mathrm{C}$.
II) A fixed amount of gas is allowed to expand to a slightly larger volume.
III) The total number of gas molecules in a system is reduced to a smaller number.

1. II and III only
2. I and III only
3. I and II only correct
4. III only
5. I only
6. II only
7. I, II, and III

Explanation:

Raising the temperature will always add to the number of available energy states in a system. More volume allows more states as well. Reducing the number of molecules however, will lower the number of microstates.

$015 \quad 10.0$ points

The oxidation of sugar to carbon dioxide and water is a spontaneous chemical reaction. Since we know that reactions that occur spontaneously in one direction cannot occur spontaneously in the reverse direction, how can we understand photosynthesis?

1. It is not a spontaneous chemical reaction; it is driven by an external source of energy light. correct
2. This reaction is characterized by an energy change so close to zero that it is essentially reversible.
3. Thermodynamics deals only with closed systems; photosynthesis is an open system.
4. Thermodynamics does not apply to photochemical reactions.
5. Thermodynamics does not apply to living
systems.

Explanation:

$016 \quad 10.0$ points

The conditions for a specific exothermic reaction are such that it is currently nonspontaneous. Which of the following changes to the conditions will likely make the reaction spontaneous?

1. increase the temperature

2. the reaction spontaneity, in this case, cannot be changed with temperature

3. decrease the temperature correct

Explanation:

The fact that an exothermic reaction $(-\Delta H)$ is non-spontaneous means that the entropy change is negative $(-\Delta S)$ and is at a high enough temperature that the reaction is governed by the entropy term in the equation $\Delta G=\Delta H-T \Delta S$.

Decreasing the temperature will eventually make the entropy term smaller in magnitude than the enthalpy term and the resulting ΔG will go negative and therefore be spontaneous.

$017 \quad 10.0$ points

A particular protein folds spontaneously at $25^{\circ} \mathrm{C}$ and 1 atm . During this folding, the protein changes conformation from a higher entropy unfolded state to a lower entropy folded state. For this process, $\Delta \mathrm{H}$ is

1. No way to know
2. $\Delta \mathrm{H}<0$ correct
3. $\Delta \mathrm{H}=0$
4. $\Delta \mathrm{H}>0$

Explanation:

If the reaction proceeds spontaneously, then $\Delta \mathrm{G}$ must be negative. The reaction also transitions from a higher entropy state to a lower entropy state, resulting in a negative $\Delta \mathrm{S}$. Us-
ing the Gibbs' Free Energy Equation, $\Delta \mathrm{H}$ must be negative in order to have both a negative $\Delta \mathrm{G}$ and a negative $\Delta \mathrm{S}$.

$018 \quad 10.0$ points

Calculate the entropy of vaporization for compound X at its boiling point of $138^{\circ} \mathrm{C}$. The enthalpy of vaporization of compound X is $42.2 \mathrm{~kJ} / \mathrm{mol}$.

1. 114.168
2. 109.365
3. 61.3854
4. 96.5584
5. 92.3661
6. 76.0959
7. 79.1469
8. 76.8945
9. 102.639
10. 81.7896

Correct answer: $102.639 \mathrm{~J} / \mathrm{molK}$.

Explanation:

$T=138^{\circ} \mathrm{C}+273.15=411.15 \mathrm{~K}$
$\Delta H=42.2 \mathrm{~kJ} / \mathrm{mol}=42200 \mathrm{~J} / \mathrm{mol}$

$$
\begin{aligned}
\Delta S & =\frac{\Delta H}{T}=\frac{42200 \mathrm{~J} / \mathrm{mol}}{411.15 \mathrm{~K}} \\
& =102.639 \mathrm{~J} / \mathrm{molK}
\end{aligned}
$$

$019 \quad 10.0$ points

Which of the following have standard Gibbs free energy of formation values equal to zero?

$$
\mathrm{N}_{2}(\mathrm{~g}) \quad \mathrm{O}_{2}(\ell) \quad \mathrm{Ar}(\ell) \quad \mathrm{CO}_{2}(\mathrm{~g}) \quad \mathrm{He}(\mathrm{~g})
$$

1. $\mathrm{N}_{2}(\mathrm{~g})$ and $\mathrm{He}(\mathrm{g})$ correct
2. $\mathrm{Ar}(\ell)$ and $\mathrm{He}(\mathrm{g})$
3. $\mathrm{N}_{2}(\mathrm{~g}), \mathrm{CO}_{2}(\mathrm{~g})$, and $\mathrm{He}(\mathrm{g})$
4. $\mathrm{N}_{2}(\mathrm{~g}), \mathrm{O}_{2}(\ell), \operatorname{Ar}(\ell)$, and $\mathrm{He}(\mathrm{g})$
5. $\mathrm{O}_{2}(\ell)$ and $\operatorname{Ar}(\ell)$

Explanation:

Standard state for all of these should be gas state. CO_{2} is not an element. Only elements
in their standard states will have $\Delta G_{\mathrm{f}}^{\circ}$ equal to zero. Only $\mathrm{N}_{2}(\mathrm{~g})$ and $\mathrm{He}(\mathrm{g})$ match this criteria.
$020 \quad 10.0$ points
When water condenses, what are the signs for q, w, and $\Delta S_{\text {sys }}$, respectively?
1.,,++-
2.,,-+- correct
3.,,+-+
4.,,+--
5.,,+++
6.,,-++

Explanation:

